Click here to sign in with


Forget Password?

Learn more

September 10, 2020

by University of North Carolina Health Care

UNC-Chapel Hill researchers have, for the first time, determined the high-resolution structure of a key DNA-sensing protein in the innate immune system called cGAS while it is bound to the nucleosome—the all-important unit of DNA packaging inside a cell’s nucleus.

This research, published in Science, reveals in detail how the nucleosomes inside our cells block cGAS from unintentionally triggering the body’s innate immune response to our own DNA. The work was led by Qi Zhang, Ph.D., associate professor of biochemistry and biophysics at the UNC School of Medicine, and Robert McGinty, MD, Ph.D., assistant professor of chemical biology and medicinal chemistry at the UNC Eshelman School of Pharmacy.

“Detecting and responding to foreign DNA from bacterial and viral pathogens is one of the most fundamental mechanisms for host defense,” said Zhang, co-senior author. “A deeper understanding of functions and regulations of this important DNA sensor will have profound impacts on both basic research and translational development of cGAS-targeted therapeutics crucial to the betterment of human health.”

McGinty, co-senior author, said, “This work was enabled by recent advances in cryo-electron microscopy technology that allows scientists, like those on our team, to observe the protein machines inside our cells with unprecedented clarity. By seeing how these proteins function normally, we can gain insights into how to manipulate their functions to treat diseases.”

In the mammalian innate immune system, the protein cyclic GMP-AMP synthase (cGAS) detects foreign or damaged “self” DNAs. Upon DNA detection, cGAS synthesizes cyclic GMP-AMP (cGAMP), the second messenger molecule that activates the cGAS-STING signaling pathway to fight infections, inflammatory diseases, and cancers.

Because cGAS is a “universal” DNA sensor, it must be regulated to differentiate pathogenic DNA from the body’s own healthy DNA to avoid any unintended immune responses. Previous research has shown that cGAS is enriched inside the nucleus where our genomic DNA is stored, but it remains a mystery as how cGAS ignores our own healthy DNA.

Using the UNC School of Medicine state-of-the-art Cryo-Electron Microscopy Core Facility, which was established in 2019, the Zhang and McGinty labs determined a 3.3Å-resolution cryo-EM structure of cGAS in complex with the nucleosome. The structure shows that cGAS employs two conserved amino acids to anchor to a negatively charged patch on the nucleosome surface. These protein-protein interactions allow the nucleosome to occupy a critical DNA sensing surface on cGAS and prevent cGAS from entering its functionally active DNA-bound state. Together with mutagenesis and functional assays, this study provides a near-atomic resolution depiction of how cGAS maintains the resting, inhibited state in the nucleus.

“These findings reshape the current paradigm of cGAS regulation and exemplify the role of the nucleosome in regulating diverse protein functions,” said McGinty, who holds a joint faculty appointment at the UNC School of Medicine.

Zhang added, “Biomedical scientists will be able to apply our research to fields such as immunology, cancer biology, and gene regulation, as well as to drug discovery for infections, inflammatory diseases, and cancers.”

Thank you for taking your time to send in your valued opinion to Science X editors.

You can be assured our editors closely monitor every feedback sent and will take appropriate actions. Your opinions are important to us.

We do not guarantee individual replies due to extremely high volume of correspondence.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose.
The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Get weekly and/or daily updates delivered to your inbox.
You can unsubscribe at any time and we’ll never share your details to third parties.

This site uses cookies to assist with navigation, analyse your use of our services, and provide content from third parties.
By using our site, you acknowledge that you have read and understand our Privacy Policy
and Terms of Use.


Cyclic GMP-AMP synthase, cGAS–STING cytosolic DNA sensing pathway, DNA, Innate immune system, Nucleosome, Cell nucleus, Protein, Cytoplasm

World news – US – Researchers reveal safeguarding of key DNA sensor in innate immune system

En s’appuyant sur ses expertises dans les domaines du digital, des technologies et des process , CSS Engineering vous accompagne dans vos chantiers de transformation les plus ambitieux et vous aide à faire émerger de nouvelles idées, de nouvelles offres, de nouveaux modes de collaboration, de nouvelles manières de produire et de vendre.

CSS Engineering s’implique dans les projets de chaque client comme si c’était les siens. Nous croyons qu’une société de conseil devrait être plus que d’un conseiller. Nous nous mettons à la place de nos clients, pour aligner nos incitations à leurs objectifs, et collaborer pour débloquer le plein potentiel de leur entreprise. Cela établit des relations profondes et agréables.

Nos services:

  1. Création des sites web professionnels
  2. Hébergement web haute performance et illimité
  3. Vente et installation des caméras de vidéo surveillance
  4. Vente et installation des système de sécurité et d’alarme
  5. E-Marketing

Toutes nos réalisations ici


Please enter your comment!
Please enter your name here