Australian scientists have solved a fundamental challenge that has hampered the extensive utilization of next-generation perovskite solar cells.

A kind of hybrid organic-inorganic materials called metal-halide perovskites offer a low-cost, flexible, and high potential means for efficient solar photovoltaics, besides light-emissive devices and fast X-ray detectors.

Although perovskite materials have gained considerable attention over the past 10 years, they have presented engineers and researchers with many issues, which have prevented their extensive use in commercial applications.

One such application is light-induced phase segregation where illumination, for example, sunlight, interrupts the cautiously arranged composition of elements inside the mixed-halide perovskites.

This, on the other hand, results in instability in the bandgap of the material, interfering with the wavelengths of light absorbed and affecting charge-carrier conduction as well as the efficiency of devices.

However, researchers have now found an incredible solution. Members of the ARC Centre of Excellence in Exciton Science have demonstrated that high-intensity light will cancel the interruption caused by light at lower intensities. They also found that this method can be applied to achieve active control of the bandgap of the material.

Dr. Chris Hall, a member of Professor Trevor Smith’s team at The University of Melbourne, and Dr. Wenxin Mao from Professor Udo Bach’s group at Monash University initially observed the ability to examine this avenue of investigation at the time of a separate experiment.

It was one of those unusual discoveries that you sometimes hear about in science. We were performing a measurement, looking for something else, and then we came across this process that at the time seemed quite strange. However, we quickly realised it was an important observation.

They sought assistance from Dr. Stefano Bernardi, a member of Dr. Asaph Widmer-Cooper’s group at the University of Sydney, who performed the computational modeling work to gain better insights into their surprising solution to the problem.

What we found is that as you increase the excitation intensity, the local strains in the ionic lattice, which were the original cause of segregation, start to merge together. When this happens, the local deformations that drove segregation disappear.

Bernardi added, “On a normal sunny day, the intensity is so low that these deformations are still localised. But if you find a way to increase the excitation above a certain threshold, for example by using a solar concentrator, then segregation disappears.”

The study results could find important applications, with scientists currently capable of retaining the maximum composition of elements inside mixed-halide perovskites upon exposure to light, which is vital for its use in solar cells.

A lot of people have approached this problem by investigating ways of suppressing light-induced disorder, such as looking at different compositions of the material or changing the dimensions of the material.

Chris added, “What we’ve shown is that you can actually use the material in the state that you want to use it, for a solar cell – all you need to do is focus more light onto it.”

“An exciting extension of this work is that the ability to rapidly switch the bandgap with light opens an interesting opportunity to use perovskites in data storage,” stated Wenxin.

“We’ve done the fundamental work and the next step is to put it into a device,” concluded Chris.

Mao, W., et al. (2020) Light-induced reversal of ion segregation in mixed-halide perovskites. Nature Materials.

Do you have a review, update or anything you would like to add to this news story?

In this interview, AZoM talks to Dr. André Wutzler, a scientist in the field of Plastics Analysis and Plastics Technology at Polymer Service GmbH Merseburg, about how he is using DMA to conduct his research.

In this interview, Gareth Powell, strategic marketing manager at Teledyne e2v, speaks to AZoM about how the 2M Mipi Optical Module can reduce the time and cost of development in AI and ADC applications.

In this interview, AZoM talks to Rohit Ramnath, a Senior Process Engineer at Master Bond, about how to manage stresses caused by CTE mismatches in adhesive applications.

Polytec introduces flexibility in optical vibration measurement with a modular sensor solution that adapts to your needs.

For high-frequency signal generation and detection in-vacuum (HV/UHV), Allectra has developed two feedthroughs, the 242-SMAD27G and the 242-SMAD40G, which allow up to 27 and 40 GHz frequencies, respectively. To complement these, we are introducing new K-type SMA cables for in-vacuum use, the 380-SMAK series.

The XIO is dedicated to upstream Oil and Gas applications and provides remote expansion for both brownfield and greenfield flow computers and RTUs.

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies.
More info.


Perovskite solar cell, Solar cell, Photovoltaics, Halide

World news – US – Metal-Halide Perovskites Could Help Develop Efficient Solar Photovoltaics

En s’appuyant sur ses expertises dans les domaines du digital, des technologies et des process , CSS Engineering vous accompagne dans vos chantiers de transformation les plus ambitieux et vous aide à faire émerger de nouvelles idées, de nouvelles offres, de nouveaux modes de collaboration, de nouvelles manières de produire et de vendre.

CSS Engineering s’implique dans les projets de chaque client comme si c’était les siens. Nous croyons qu’une société de conseil devrait être plus que d’un conseiller. Nous nous mettons à la place de nos clients, pour aligner nos incitations à leurs objectifs, et collaborer pour débloquer le plein potentiel de leur entreprise. Cela établit des relations profondes et agréables.

Nos services:

  1. Création des sites web professionnels
  2. Hébergement web haute performance et illimité
  3. Vente et installation des caméras de vidéo surveillance
  4. Vente et installation des système de sécurité et d’alarme
  5. E-Marketing

Toutes nos réalisations ici


Please enter your comment!
Please enter your name here