A study claiming artificial intelligence can beat trained radiologists at detecting breast cancer has caused scientists from around the globe to demand more transparency and reproducibility in AI-based research.

Experts at Johns Hopkins, Harvard School of Public Health, MIT, Princess Margaret Cancer Center, and others specifically want journals to hold investigators to higher standards. They implored their colleagues to share codes, models and test settings in peer-reviewed publications.

“Scientific progress depends on the ability of researchers to scrutinize the results of a study and reproduce the main finding to learn from,” Benjamin Haibe-Kains, PhD, a senior scientist at Princess Margaret in Toronto, said in a statement. “But in computational research, it’s not yet a widespread criterion for the details of an AI study to be fully accessible. This is detrimental to our progress.”

In their piece, the authors pointed out an example of poor transparency that particularly boiled their blood: a Google Health-led study released earlier this year that claimed an AI system—DeepMind—could beat out radiologists at spotting breast cancer on mammograms.

The problem, Haibe-Kains and colleagues noted, is that the study didn’t describe its methods and omitted the tool’s coding and models. This stifled others from understanding how the algorithm worked and if it could be applied at other healthcare institutions, the authors noted.

Health Imaging covered this study back in January, which also included an invited commentary published in Nature warning clinicians of its many limitations.

“The real world is more complicated and potentially more diverse than the type of controlled research environment reported in this study,” Etta D. Pisano, MD, of Harvard Medical School, explained.

In the piece published on Oct. 14, the group offers up frameworks and platforms for researchers to safely share the data, computer code and predictive models used for AI-based investigations. Doing so may help translate valuable findings to improved clinical outcomes.

“We have high hopes for the utility of AI for our cancer patients,” Haibe-Kains explained. “Sharing and building upon our discoveries–that’s real scientific impact.”

Source: https://www.healthimaging.com/topics/artificial-intelligence/transparency-ai-research-google-breast-cancer-screening

Research, Artificial intelligence

World news – CA – Experts cite Google-led breast cancer screening study in call for more AI research transparency

En s’appuyant sur ses expertises dans les domaines du digital, des technologies et des process , CSS Engineering vous accompagne dans vos chantiers de transformation les plus ambitieux et vous aide à faire émerger de nouvelles idées, de nouvelles offres, de nouveaux modes de collaboration, de nouvelles manières de produire et de vendre.

CSS Engineering s’implique dans les projets de chaque client comme si c’était les siens. Nous croyons qu’une société de conseil devrait être plus que d’un conseiller. Nous nous mettons à la place de nos clients, pour aligner nos incitations à leurs objectifs, et collaborer pour débloquer le plein potentiel de leur entreprise. Cela établit des relations profondes et agréables.

Nos services:

  1. Création des sites web professionnels
  2. Hébergement web haute performance et illimité
  3. Vente et installation des caméras de vidéo surveillance
  4. Vente et installation des système de sécurité et d’alarme
  5. E-Marketing

Toutes nos réalisations ici https://www.css-engineering.com/en/works/


Please enter your comment!
Please enter your name here