Dark matter is everywhere, binding galaxies together, even though scientists do not know of any meaningful way in which it can be directly detected or measured. Dark matter is dark because it does not emit or reflect light and it does not appear to interact with any form of radiation. But scientists know it accounts for about 27 percent of the mass of the Universe, based on the effects it has on galaxies.

In short, we know dark matter is there because galaxies are much heavier than the sum total of their stars, dust and gas.

As a result, dark matter has been dubbed the glue holding galaxies together, preventing them from falling apart.

Many theories have been put forward to explain this mystery substance, such as gravity leaking into our Universe from another dimension.

Some scientists are, however, positive the dark matter mystery can be solved through the axion – a hypothetical elementary particle first proposed in the 1970s.

The astrophysicist has focused his hunt for dark matter on a deep-space body known as PSR J1745-2900.

This celestial object is a collapsed star with powerful magnetic fields, a magnetar, that orbits close to the centre of the Milky Way galaxy.

Rather than focus on lab-based experiments, Professor Darling is using telescope data to spot evidence of the axion particle in action.

He said: “In astrophysics, we find all of these interesting problems like dark matter and dark energy, then we step back and let physicists solve them. It’s a shame.”

But Professor Darling hopes the research could still be used by physicists worldwide to help track down the axion.

DON’T MISS…Will CERN experiment uncover truth behind dark matter? [INTERVIEW]Astronomy news: Scientists measure precise amount of matter in cosmos [STUDY]Alien sighting over London ‘Science has some catching up’ – claim [PICTURES]

His research has been so far published in The Astrophysical Journal Letters and Physical Review Letters.

The magnetar PSR J1745-2900 orbits the galactic centre of the Milky Way, a supermassive black hole dubbed Sagittarius A*, from less than one light-year away.

The collapsed star generates a magnetic field that is about one billion times as powerful as the strongest magnets on Earth.

And all of this is, Professor Darling said, compressed down an area about 12.4 miles (20km) across.

If the star is converting the hypothetical particle into light, there is a good chance the transformation will create a detectable radiation signature.

However, the search for this signal has been compared to looking for a needle in a very big haystack.

See today’s front and back pages, download the newspaper,
order back issues and use the historic Daily Express
newspaper archive.

Source: https://www.express.co.uk/news/science/1341797/Dark-matter-mystery-axions-magnetar-astrophysics-space-news

Universe, Dark matter, Galaxy cluster, Scientist

World news – CA – Dark matter mystery: Scientist probes ‘dark matter detector’ for hypothetical particles

En s’appuyant sur ses expertises dans les domaines du digital, des technologies et des process , CSS Engineering vous accompagne dans vos chantiers de transformation les plus ambitieux et vous aide à faire émerger de nouvelles idées, de nouvelles offres, de nouveaux modes de collaboration, de nouvelles manières de produire et de vendre.

CSS Engineering s’implique dans les projets de chaque client comme si c’était les siens. Nous croyons qu’une société de conseil devrait être plus que d’un conseiller. Nous nous mettons à la place de nos clients, pour aligner nos incitations à leurs objectifs, et collaborer pour débloquer le plein potentiel de leur entreprise. Cela établit des relations profondes et agréables.

Nos services:

  1. Création des sites web professionnels
  2. Hébergement web haute performance et illimité
  3. Vente et installation des caméras de vidéo surveillance
  4. Vente et installation des système de sécurité et d’alarme
  5. E-Marketing

Toutes nos réalisations ici https://www.css-engineering.com/en/works/

LEAVE A REPLY

Please enter your comment!
Please enter your name here